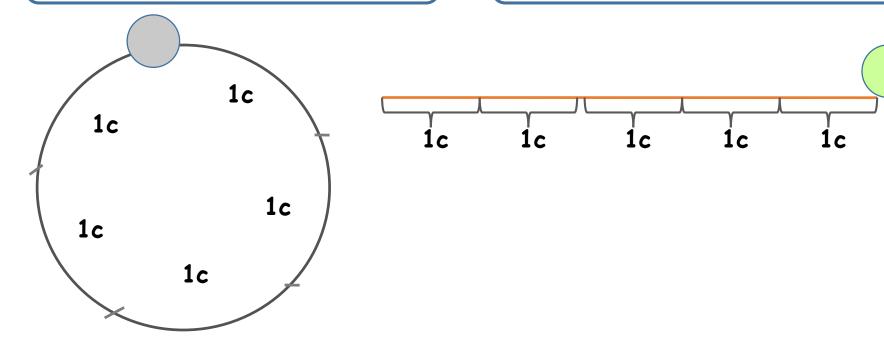
- 1. Механика.
- 2. Кинематика.
- 3. Механическое движение.
- 4. Поступательное движение.
- 5. Материальная точка.
- 6. Система отсчёта.
- 7. Траектория.
- 8. Путь (определение, обозначение).
- 9. Перемещение (определение, обозначение)
- 10. Проекция вектора, модуль вектора (обозначение, знаки, формула)


Равномерное прямолинейное движение

- 1. Определение, примеры
- 2. Формула скорости
- 3. Формула перемещения
- 4. Формула пути
- 5. Уравнение движения

Движение называется равномерным, если за любые равные промежутки времени тело проходит одинаковые пути

Может быть криволинейным (траектория - кривая линия)

Может быть прямолинейным (траектория - прямая линия)

Скорость при равномерном прямолинейном движении

Особенность: постоянна по модулю и по направлению

√ <u>Формула</u>

Вектор скорости (определение)

$$\overrightarrow{v} = \frac{\overrightarrow{S}}{t}$$

в задачах Проекция скорости

$$v_x = \frac{S_x}{t} = \frac{x - x_0}{t}$$

Модуль скорости

$$\mathcal{U} = \frac{S}{t} = \frac{|x - x_0|}{t}$$

Скорость при равномерном прямолинейном движении

✓ Направление

Из
$$\overrightarrow{v} = \frac{\overrightarrow{S}}{t}$$
 следует, что $\overrightarrow{v} \uparrow \uparrow \overrightarrow{S}$

Проекции скорости v_{x}

$$v_{x_1} = 0 \qquad v_{x_2} > 0 \qquad v_{x_3} = 0 \qquad v_{x_4} < 0$$

$$v_{x_1} = v_{x_2} > 0 \qquad v_{x_3} = 0 \qquad v_{x_4} < 0$$

$$v_{x_1} = v_{x_2} > 0 \qquad v_{x_3} = 0 \qquad v_{x_4} < 0$$

Скорость при равномерном прямолинейном движении

✓ Единицы скорости

$$X \frac{KM}{Y} = \frac{X \cdot 1000 \text{ M}}{3600 \text{ c}} = \cdots \frac{M}{c}$$

B CH
$$1\frac{M}{C}$$

v=10 м/c Это значит, что за каждую секунду тело проходит 10 м

v=25 м/мин За каждую минуту тело проходит 25 м

v=300 км/ч За каждый час тело проходит путь, равный 300 км

v=7,9 км/с За каждую секунду тело проходит путь, равный 7,9 км

$$36 \frac{KM}{Y} = \frac{36 \cdot 1000 \text{ M}}{3600 \text{ c}} = 10 \frac{M}{c}$$

Перемещение при равномерном прямолинейном движении

в векторном виде

$$\vec{S} = \vec{v} \cdot t$$

$$S_x = v_x \cdot t$$

$$S_x = x - x_0$$

в векторном виде
$$S = v \cdot t$$

в проекциях $S_x = v_x \cdot t$, $S_x = x - x_0$

$$\overrightarrow{v} = \frac{\overrightarrow{S}}{t}$$

Путь при равномерном прямолинейном движении

✓ Формула

обозначение

$$S = l = |S_x|$$

$$S = |v_x \cdot t| = |x - x_0| \quad , \quad |S = v \cdot t|$$

$$S = v \cdot t$$

$$S_x = v_x \cdot t$$

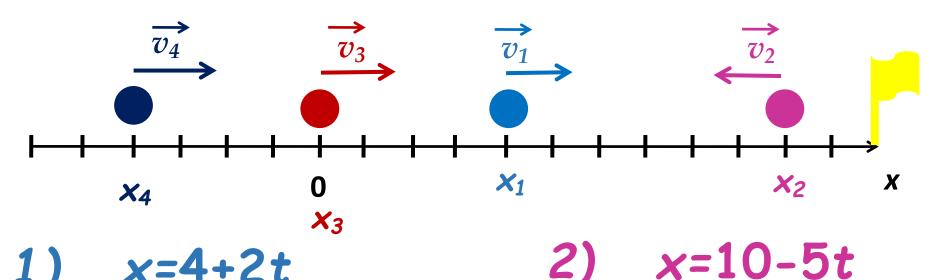
$$S_x = x - x_0$$

5

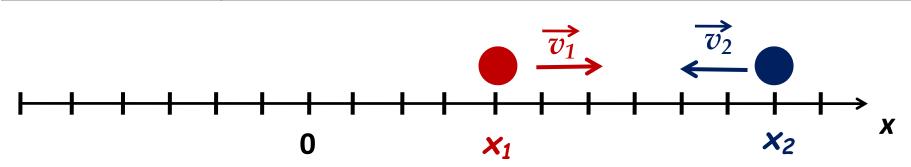
Уравнение движения (зависимость координаты тела от времени)

Вывод:

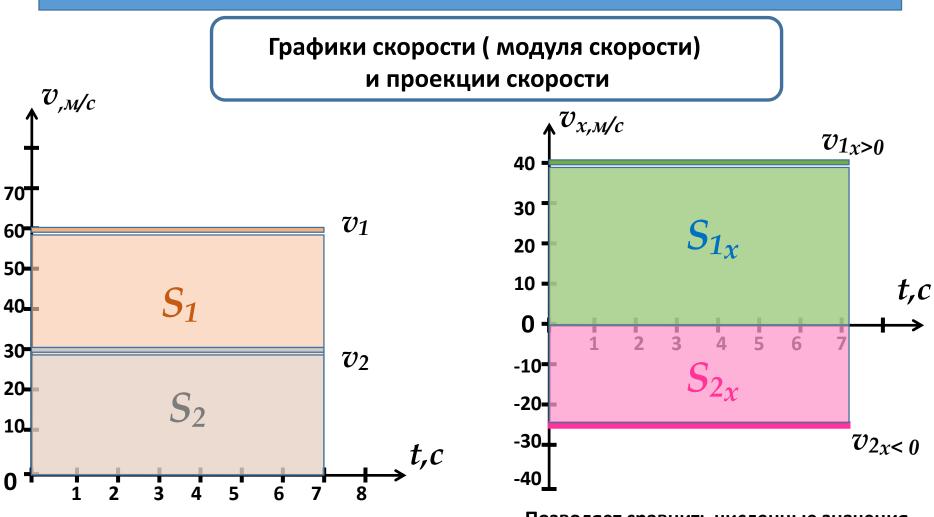
$$v_{x} = \frac{x - x_{0}}{t} \longrightarrow x - x_{0} = v_{x} \cdot t$$


$$x = x_{0} + v_{x} \cdot t$$

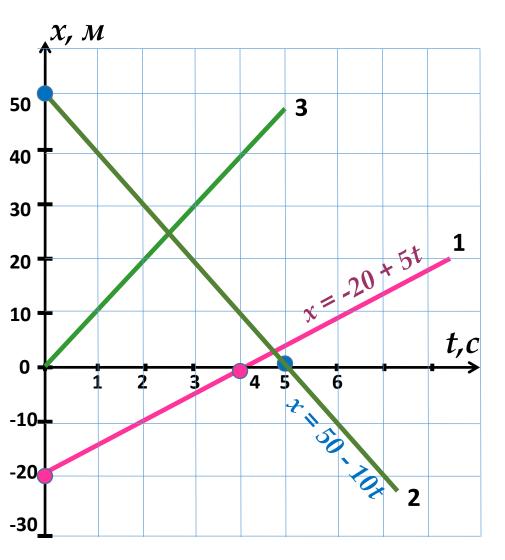
$oldsymbol{x}$ и $oldsymbol{t}$ переменные, $oldsymbol{x}_0$ и $oldsymbol{v}_{oldsymbol{x}}$ постоянные


Если известна начальная координата и скорость движения, можно определить координату тела в данный момент времени

3)
$$x=3t$$
 4) $x=-4+4t$ $3t=-4+4t$ $t=4$ c - время встречи


1 тело
$$S=3\cdot 4=12$$
 (м) или $S=|12-0|=12$ (м) 2 тело $S=4\cdot 4=16$ (м) или $S=|12-(-4)|=16$ (м)

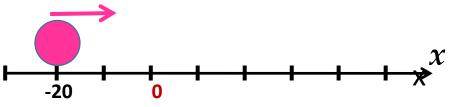
	Обозначение	Формула	Формула (через координаты)
Проекция скорости	v_{x}	$v_x = \frac{S_x}{t}$	$v_x = \frac{x - x_0}{t}$
Проекция перемещения	$\boldsymbol{S}_{\boldsymbol{\mathcal{X}}}$	$S_x = v_x \cdot t$	$S_x = x - x_0$
Путь	$S = S_x $	$S = v \cdot t$	$S = x - x_0 $
Уравнение движения	$x = x_0 + v_x \cdot t$		


Графическое представление движения

Позволяет сравнить численные значения скоростей, но направления движения определить не позволяет Позволяет сравнить численные значения скоростей и определить направление движения тел.

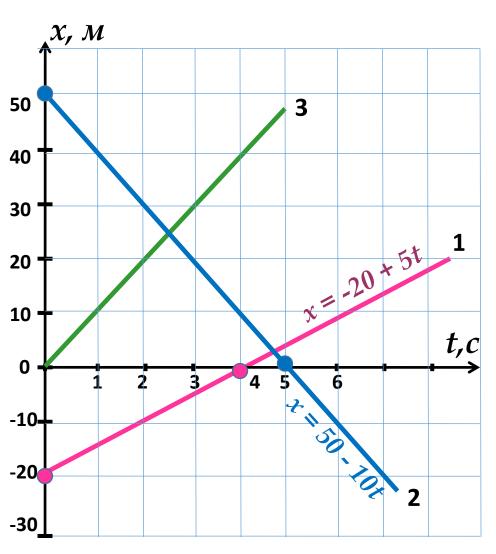
График зависимости координаты от времени

$$x = x_0 + v_x t$$



Учимся «читать» графики

$$\frac{1 \text{ тело}}{v_{x1}} = \frac{x - x_0}{t} = \frac{0 \text{ } m - (-20 \text{ } m)}{4 \text{ } c} = 5 \text{ } m/c$$


Тело движется из точки с координатой $x_0 = -20 \ M$ в положительном направлении оси ОХ (т.к. $v_{x_1} > 0$) равномерно со скоростью 5 м/с Зависимость x(t) имеет вид:

$$x = -20 + 5t$$

График зависимости координаты от времени

$$x = x_0 + v_x t$$

Учимся «читать» графики

$$\frac{2 \text{ тело}}{v_{x2}} = \frac{x - x_0}{t} = \frac{0 \text{ } m - 50 \text{ } m}{5 \text{ } c} = -10 \text{ } m/c$$

Тело движется из точки с координатой $x_0 = 50 \ M$ в отрицательном направлении оси ОХ (т.к. $v_{x2} < 0$) равномерно со скоростью $10 \ \text{м/c}$

Зависимость x(t) имеет вид: